If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2-2w=65
We move all terms to the left:
3w^2-2w-(65)=0
a = 3; b = -2; c = -65;
Δ = b2-4ac
Δ = -22-4·3·(-65)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-28}{2*3}=\frac{-26}{6} =-4+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+28}{2*3}=\frac{30}{6} =5 $
| -13=2x2+9 | | 2j–3=5 | | x/10-9=9/20 | | 2/3x-1/5=3/2x+4/5 | | 5(-x+2)=-8 | | -8*a=1/4 | | 18x+3x-7x=28 | | -8a=1/2 | | 5x-15=10x-5x-15 | | 8(x+2)=-4(4-4x) | | x−11.39=74.36 | | .20(25-5a)=4-a | | -4+7g=3g+9 | | 122-y=270 | | -4(x+4)=3(-8-2x) | | 32=-5x-3 | | -6(x+3)=3(-9-3x) | | X^2+54=4x^2 | | 2n-2(3+n)=-9 | | -(3x-15)=-3(5-4x) | | 4x+8-7x=17 | | 7x+8=4x+23 | | 2x2+5x=7 | | -2(-x+3)=-1 | | x+1.33=7.82 | | 7+x=3x+15 | | 1.3=1.76x1.70 | | x•x-4x=0 | | -18=-5+t | | 6x-(x-3)=5x+4(x-1) | | 3+7x=5x+27 | | 4x(x)=(x+6)(2x+40) |